Abstract

The traditional rolling bearing diagnosis algorithms have problems such as insufficient information on time-frequency images and poor feature extraction ability of the diagnosis model. These problems limit the improvement of diagnosis performance. In this article, the input of the time-frequency image and intelligent diagnosis algorithms are optimized. Firstly, the characteristics of two advanced time-frequency analysis algorithms are deeply analyzed, i.e., multisynchrosqueezing transform (MSST) and time-reassigned multisynchrosqueezing transform (TMSST). Then, we propose time-frequency compression fusion (TFCF) and a residual time-frequency mixed attention network (RTFANet). Among them, TFCF superposes and splices two time-frequency images to form dual-channel images, which can fully play the characteristics of multi-channel feature fusion of the convolutional kernel in the convolutional neural network. RTFANet assigns attention weight to the channels, time and frequency of time-frequency images, making the model pay attention to crucial time-frequency information. Meanwhile, the residual connection is introduced in the process of attention weight distribution to reduce the information loss of feature mapping. Experimental results show that the method converges after seven epochs, with a fast convergence rate and a recognition rate of 99.86%. Compared with other methods, the proposed method has better robustness and precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.