Abstract

AbstractWe present recent developments in rolled-up helical nanobelts in which helical structures are fabricated by the self-scrolling technique. Nanorobotic manipulation results show that these structures are highly flexible and mechanically stable. Inspired by the helical-shaped flagella of motile bacteria, such as E. coli, artificial bacterial flagella (ABFs) are a new type of swimming microrobot. Experimental investigation shows that the motion, force, and torque generated by an ABF can be precisely controlled using a low-strength, rotating magnetic field. These miniaturized helical swimming microrobots can be used as magnetically driven wireless manipulators for manipulation of microobjects in fluid and for target drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.