Abstract
This paper presents a novel method for printing thick silver electrodes with high fidelity using a rotogravure technique and high-viscosity silver ink. The widths and thicknesses of the printed electrodes were investigated with respect to the printing angle and printing speed. In addition, the use of a low-surface-energy polyethylene terephthalate substrate was found to decrease the ink transfer for printing angles of up to 60°, possibly because of the small adhesive force at the interface between the ink and substrate. We therefore employed substrates with higher surface energies, namely polyimide and treated polyimide, to enhance the ink transfer. A lower printing speed of 0.5 m/min and high viscosity of 15 Pa·s are required to obtain better functionality with a lower resistivity. However, using the proposed method, the fidelities of the printed patterns were achieved even with a high printing speed of 10.5 m/min using the high viscosity of 15 Pa·s, necessitating a subsequent sintering process. Therefore, the printed pattern was sintered in an oven at 350°C for 10 min. Patterned silver electrodes 1 m in length, 121 ± 2.2 μm in line width, 6.5 ± 2.2 μm in average thickness, and with a resultant resistivity of 9 µΩ·cm were achieved. The findings of this study confirm the potential of rotogravure printing for fabricating thick electrodes with high fidelity for flexible printed circuit boards with large areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.