Abstract

At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20 nm thickness Al2O3 diffusion barrier layers on 500 mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105 °C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20 nm Al2O3 films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38 °C/90% relative humidity by coulometric isostatic–isobaric method were below the detection limit of the instrument (<5 × 10−4 g/m2 day) for films coated at web moving speed of 0.25 m/min. Measurements using the Ca test indicated water vapor transmission rates ∼5 × 10−6 g/m2 day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call