Abstract

Six-carbon-chained polyfluoroalkyl substances, such as 6:2 fluorotelomer alcohol (6:2 FTOH), are being used to replace longer chained compounds in the manufacture of various commercial products. This study examined the effects of growth substrates and nutrients on specific intracellular and extracellular enzymes mediating 6:2 FTOH aerobic biotransformation by the white-rot fungus, Phanerochaete chrysosporium. Cellulolytic conditions with limited glucose were a suitable composition, resulting in high 5:3 FTCA yield (37 mol%), which is a key intermediate in 6:2 FTOH degradation without forming significant amounts of terminal perfluorocarboxylic acids (PFCAs). Sulfate and ethylenediaminetetraacetic acid (EDTA) were also essential for 5:3 FTCA production, but, at lower levels, resulted in the buildup of 5:2 sFTOH (52 mol%) and 6:2 FTUCA (20 mol%), respectively. In non-ligninolytic nutrient-rich medium, 45 mol% 6:2 FTOH was transformed but produced only 12.7 mol% 5:3 FTCA. Enzyme activity studies imply that cellulolytic conditions induce the intracellular cytochrome P450 system. In contrast, extracellular peroxidase synthesis is independent of 6:2 FTOH exposure. Gene expression studies further verified that peroxidases were relevant in catalyzing the downstream transformations from 5:3 FTCA. Collectively, the identification of nutrients and enzymatic systems will help elucidate underlying mechanisms and biogeochemical conditions favorable for fungal transformation of PFCA precursors in the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.