Abstract

This paper aims to explain when the vaporization or thermal decomposition prevails during laser-induced bubble growth and how they influence bubble morphology. Bubbles were generated by irradiating a 304 stainless steel plate submerged in degassed water using millisecond lasers with a pulse width of 0.4 ms and powers of 1.6 kW and 3.2 kW, respectively. The dynamic evolution of bubbles was recorded by a high-speed camera. Moreover, the numerical models were developed to obtain a vaporization model and a decomposition model by incorporating the source terms due to the vaporization and decomposition mass fluxes into the governing equations, respectively. The simulated dynamic bubble evolution is consistent with the experimental results. When the laser power is 1.6 kW, a thin-layer bubble is formed, which gradually shrinks and eventually disappears after the laser stops irradiating. When the laser power is 3.2 kW, a spherical bubble is formed, and its volume decreases significantly after the laser stops irradiating. Subsequently, it remains relatively stable during the observation period. The fundamental reason for the difference between the bubble morphologies obtained from the vaporization model and the decomposition model lies in the presence of a condensation zone in the gas phase. When water vaporization or thermal decomposition dominates, the temperatures obtained from the models align with the decomposition ratios at varying temperatures reported in the literature. Our findings are significant for understanding the dynamic behavior of bubbles, with implications for various laser processing underwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.