Abstract

Insights into the relations between and among ethanol-induced contractions in rat aorta, tyrosine kinases (including src family of cytoplasmic tyrosine kinases), 1-phosphatidylinositol 3-kinases (PI-3Ks), mitogen-activated protein kinases (MAPKs), and regulation of intracellular free Ca 2+ ([Ca 2+] i) were investigated in the present study. Ethanol-induced concentration-dependent contractions in isolated rat aortic rings were attenuated greatly by pretreatment of the arteries with low concentrations of an antagonist of protein tyrosine kinases (genistein), an src homology domain 2 (SH2) inhibitor peptide, a highly specific antagonist of p38 MAPK (SB-203580), a potent, selective antagonist of two specific MAPK kinases—MEK1/MEK2 (U0126)—and a selective antagonist of mitogen-activated protein kinase kinase (MAPKK) (PD-98059), as well as by treatment with wortmannin or LY-294002 (both are selective antagonists of PI-3Ks). Inhibitory concentration 50 (IC 50) levels obtained for these seven antagonists were consistent with reported inhibition constant (Ki) values for these tyrosine kinase, MAPK, and MAPKK antagonists. Ethanol-induced transient and sustained increases in [Ca 2+] i in primary single smooth muscle cells from rat aorta were markedly attenuated in the presence of genistein, an SH2 domain inhibitor peptide, SB-203580, U0126, PD-98059, wortmannin, and LY-294002. A variety of specific antagonists of known endogenously formed vasoconstrictors did not inhibit or attenuate either the ethanol-induced contractions or the elevations of [Ca 2+] i. Results of the present study support the suggestion that activation of tyrosine kinases (including the src family of cytoplasmic tyrosine kinases), PI-3Ks, and MAPK seems to play an important role in ethanol-induced contractions and the elevation of [Ca 2+] i in smooth muscle cells from rat aorta. These signaling pathways thus may be important in hypertension in human beings associated with chronic alcohol consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call