Abstract

Discovery of novel secreted enzymes and proteins in Mycobacterium tuberculosis (M. tuberculosis) are imperative to understanding the pathogenic system for pathogenesis requires attention. Till date, the groups of these secreted enzymes are not meaningfully characterized in terms of M. tuberculosis. In this way, cutinase, a small lipolytic protein, exists in both bacteria and fungi as well which have a potential catalytic activity. During our search, we have found a few genes of M. tuberculosis demonstrating a same significant lipase action as fungi Fusarium solani cutinase contain. Genome sequencing of M. tuberculosis uncover a lot of proteins, wherein (Rv1758, Rv1984c, Rv2301, Rv3451, Rv3452, Rv3724A, Rv3724B, and Rv3802c) genes have been noted which are exhibiting a cutinase-like activity and closely homologous to that of F. solani cutinase and having the ability to hydrolyze model substrates including p-nitrophenyl butyrate (p-PNB), cutin, triacylglycerols (TAGs), and triolein (TO), yet their biological significance in pathogenesis stays subtle and uncharacterized. In a basic perspective, the measure of cutinase expressed by M. tuberculosis and part of these small lipolytic enzymes in the pathologic discipline require thorough characterization. So, through focusing on cutinase-encoding genes in M. tuberculosis and their active catalytic motif could help to build up a novel therapeutic approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call