Abstract

Tungsten dual polygate (W-DPG) stacks with diffusion barriers formed by the Ti(N) process were investigated in terms of gate contact resistance (Rc) and the polydepletion effect. The Ti layer in the Ti/WN diffusion barrier is found to be converted into a TiSix/TiN bilayer during the postdeposition annealing process. The TiSix reaction between Ti and p+ polycrystalline silicon (poly-Si) effectively prevents the formation of a parasitic dielectric layer, which could lead to low-gate Rc. The TiN reaction between Ti and WN minimizes the occurrence of the TiSix reaction, which effectively reduces p+ polydepletion caused by the out-diffusion of boron during the postdeposition annealing process. Therefore, poly-Si/Ti/WN/W could be a promising tungsten dual polygate stack, which satisfies high-speed requirements in dynamic random-access memory (DRAM) devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.