Abstract

The mobilization of palm seed reserves is a complex process because of the abundance and diversity of stored compounds and results from the development of a highly specialized haustorium. This work focused on the important Neotropical oleaginous palm Acrocomia aculeata, with the aim of defining phases of seedling development associated with mobilization of reserves and elucidating the role of haustorium and endosperm in this process. Standard methods were performed, including biometric, anatomical, and histochemical analyses, as well as the evaluation of the activities of the enzymes endo-β-mannanase and lipase, throughout the reserve mobilization in seeds during germination and in seedlings. Seeds of A. aculeata stored large quantities of proteins, lipids, and polysaccharides in the embryo and endosperm. The mobilization of reserves initiated in the haustorium during germination and subsequently occurred in the endosperm adjacent to the haustorium, forming a gradually increasing zone of digestion. Proteins and polysaccharides were the first to be mobilized, followed by lipids and cell wall constituents. The haustorium activates and controls the mobilization, forming transitory reserves and translocating them to the vegetative axis, while the endosperm, which also has an active role, serves as a site of intense enzymatic activity associated with protein bodies. Seedling development can be described as occurring in six phases over a long period (approximately 150days) due to the large amount of seed reserves. This process exhibits an alternation between stages of accumulation and translocation of protein, lipid, and carbohydrate reserves in the haustorium, which favors the seedling establishment and the reproductive success of the species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call