Abstract

The influence of polarization force (PF) (arises due to dust density inhomogeneity), nonthermal electrons, and dust density inhomogeneity associated with positively charged dust on linear dust-acoustic (DA) waves in an inhomogeneous unmagnetized dusty plasma are investigated. By taking the normal mode analysis, the dispersion relation in such a non-Maxwellian inhomogeneous plasma is obtained, and that the dispersion properties of the DA waves are significantly modified by the presence of PF and nonthermal electrons. The PF is increased with the increase of nonthermal electrons. It is found that the phase speed of the DA waves is significantly decreased with the presence of PF and nonthermal electrons. The potential associated with the DA waves is de-enhanced with the increase of equilibrium dust number density. The role of positive dust number density on dispersion properties is also shown. The present findings relevant to different scenarios in laboratory and space dusty plasma, such as Martian ionosphere, solar flares, TEXTOR-94 tokamak plasmas, rf excited argon magnetoplasma, etc., can be useful to understand the properties of localized electrostatic disturbances in those dusty plasma system, are also briefly addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.