Abstract

Double-stranded RNA-dependent protein kinase (PKR) is a serine/threonine protein kinase which is activated by double-stranded RNAs and related to several signal transduction pathways. To examine the effects of PKR on bone metabolism, we established PKR-K/R mutant cells in which amino acid lysine at 296 is substituted with arginine. PKR regulated apoptosis in osteoblastic cells via nuclear factor kappa-B (NF-κB) cascade. MC3T3-E1 cells cultured with osteoblast differentiation medium differentiated into osteoblasts, while the mutant cells did not differentiate into osteoblasts. RAW246.7 cells triggered with receptor activator of NF-κB ligand (RANKL) formed tartrate-resistant acid phosphatase-positive multinucleated giant cells, whereas PKR-K/R mutant RAW cells did not. Differentiation of osteoblasts and osteoclasts was caused by NF-κB activation and signal transducer and activator of transcription1 (STAT1) ubiquitination and degradation. We also demonstrated involvement of PKR in chondrocyte differentiation. PKR prevented tumor necrosis factor-α- and interleukin 1α-induced bone resorption in calvaria and artificially induced periodontal disease in rat. Our findings indicate that PKR regulates bone metabolism invitro and invivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call