Abstract
The transcription factor nuclear factor kappaB (NF-kappaB) is moving to the forefront of the fields of apoptosis and neuronal plasticity because of recent findings showing that activation of NF-kappaB prevents neuronal apoptosis in various cell culture and in vivo models and because NF-kappaB is activated in association with synaptic plasticity. Activation of NF-kappaB was first shown to mediate antiapoptotic actions of tumor necrosis factor in cultured neurons and was subsequently shown to prevent death of various nonneuronal cells. NF-kappaB is activated by several cytokines and neurotrophic factors and in response to various cell stressors. Oxidative stress and elevation of intracellular calcium levels are particularly important inducers of NF-kappaB activation. Activation of NF-kappaB can interrupt apoptotic biochemical cascades at relatively early steps, before mitochondrial dysfunction and oxyradical production. Gene targets for NF-kappaB that may mediate its antiapoptotic actions include the antioxidant enzyme manganese superoxide dismutase, members of the inhibitor of apoptosis family of proteins, and the calcium-binding protein calbindin D28k. NF-kappaB is activated by synaptic activity and may play important roles in the process of learning and memory. The available data identify NF-kappaB as an important regulator of evolutionarily conserved biochemical and molecular cascades designed to prevent cell death and promote neuronal plasticity. Because NF-kappaB may play roles in a range of neurological disorders that involve neuronal degeneration and/or perturbed synaptic function, pharmacological and genetic manipulations of NF-kappaB signaling are being developed that may prove valuable in treating disorders ranging from Alzheimer's disease to schizophrenia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.