Abstract
Thyroid hormone (TH) plays a fundamental role in thermoregulation, yet the molecular mediators of its effects are not fully defined. Recently, skeletal muscle (SKM) uncoupling protein (UCP) 3 was shown to be an important mediator of the thermogenic effects of the widely abused sympathomimetic agents 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) and methamphetamine. Expression of UCP3 is regulated by TH. Activation of UCP3 is indirectly regulated by norepinephrine (NE) and is dependent upon the availability of free fatty acids (FFAs). We hypothesized that UCP3 may be a molecular link between TH and hyperthermia, requiring increased levels of both NE and FFAs to accomplish the thermogenic effect. Here, we demonstrate that MDMA (40 mg/kg s.c.) significantly increases plasma FFA levels 30 min after treatment. Pharmacologically increasing NE levels through the inhibition of phenylethanolamine N-methyltransferase with +/-2,3-dichloro-alpha-methylbenzylamine potentiated the hyperthermic effects of a 20 mg/kg dose of MDMA. Using Western blots and regression analysis, we further illustrated that chronic hyperthyroidism in rats potentiates the hyperthermic effects of MDMA and increases levels of SKM UCP3 protein in a linear fashion according to levels of circulating plasma TH. Conversely, chronic hypothyroidism results in a hypothermic response to MDMA that is directly proportionate to decreased UCP3 expression. Acute TH supplementation did not change the skeletal muscle UCP3 expression levels or temperature responses to MDMA. These findings suggest that, although MDMA-induced hyperthermia appears to result from increased NE and FFA levels, susceptibility is ultimately determined by TH regulation of UCP3-dependent thermogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacology and Experimental Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.