Abstract

Background and Purpose- Tobacco cigarette smoking is considered to be a strong risk factor for intracranial aneurysmal rupture. Nicotine is a major biologically active constituent of tobacco products. Nicotine's interactions with vascular cell nicotinic acetylcholine receptors containing α7 subunits (α7*-nAChR) are thought to promote local inflammation and sustained angiogenesis. In this study, using a mouse intracranial aneurysm model, we assessed potential contributions of nicotine exposure and activation of α7*-nAChR to the development of aneurysmal rupture. Methods- Intracranial aneurysms were induced by a combination of deoxycorticosterone-salt induced hypertension and a single-dose elastase injection into cerebrospinal fluid in mice. Results- Exposure to nicotine or an α7*-nAChR-selective agonist significantly increased aneurysm rupture rate. Coexposure to an α7*-nAChR antagonist abolished nicotine's deleterious effect. In addition, nicotine's promotion of aneurysm rupture was absent in smooth muscle cell-specific α7*-nAChR subunit knockout mice but not in mice lacking α7*-nAChR on endothelial cells or macrophages. Nicotine treatment increased the mRNA levels of vascular endothelial growth factor, platelet-derived growth factor-B, and inflammatory cytokines. α7*-nAChR antagonist reversed nicotine-induced upregulation of these growth factors and cytokines. Conclusions- Our findings indicate that nicotine exposure promotes aneurysmal rupture through actions on vascular smooth muscle cell α7*-nAChR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call