Abstract

Simple SummaryThe endocrine effects of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in the vasculature, and the autocrine effects of ANP and BNP in cardiomyocytes are mediated by the common guanylyl cyclase A receptor (GC-A) expressed in various tissues and cell types. C-type natriuretic peptide (CNP) has paracrine actions that regulate vascular resistance and moderate myocardial stiffness via guanylyl cyclase B receptor (GC-B). Genetically modified mice have revealed the physiological roles of ANP and BNP in blood pressure, cardiac remodeling, and acute myocardial infarction. Molecular pathways in GC-A signaling specifically in cardiomyocytes were also investigated. ANP and BNP via the GC-A signaling phosphorylate regulator of G-protein signaling subtype 4 (RGS4) result in the inhibition of Gαq signaling coupled with angiotensin II type 1A receptor, inhibit the activation of transient receptor potential C6 (TRPC6), and attenuate genomic actions of the cardiac mineralocorticoid receptor (MR). Moreover, recent studies showed the physiological roles of CNP via GC-B in blood pressure and cardiac stiffness. Since natriuretic peptides are degraded by neprilysin (NEP), inhibiting NEP activity is expected to enhance the actions of natriuretic peptides. Experimental studies and clinical trials have shown the effect of NEP inhibition on cardiac remodeling, acute myocardial infarction, and hypertension.Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) activate the guanylyl cyclase A receptor (GC-A), which synthesizes the second messenger cGMP in a wide variety of tissues and cells. C-type natriuretic peptide (CNP) activates the cGMP-producing guanylyl cyclase B receptor (GC-B) in chondrocytes, endothelial cells, and possibly smooth muscle cells, cardiomyocytes, and cardiac fibroblasts. The development of genetically modified mice has helped elucidate the physiological roles of natriuretic peptides via GC-A or GC-B. These include the hormonal effects of ANP/BNP in the vasculature, autocrine effects of ANP/BNP in cardiomyocytes, and paracrine effects of CNP in the vasculature and cardiomyocytes. Neprilysin (NEP) is a transmembrane neutral endopeptidase that degrades the three natriuretic peptides. Recently, mice overexpressing NEP, specifically in cardiomyocytes, revealed that local cardiac NEP plays a vital role in regulating natriuretic peptides in the heart tissue. Since NEP inhibition is a clinically accepted approach for heart failure treatment, the physiological roles of natriuretic peptides have regained attention. This article focuses on the physiological roles of natriuretic peptides elucidated in mice with GC-A or GC-B deletion, the significance of NEP in natriuretic peptide metabolism, and the long-term effects of angiotensin receptor-neprilysin inhibitor (ARNI) on cardiovascular diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call