Abstract

The development of catalysts that effectively activate target pollutants and promote their complete conversion is an admirable objective in the environmental photocatalysis field. In this work, graphitic carbon nitride (g-C3N4) microtubes with tunable N-vacancy concentrations were controllably fabricated using an in situ soft-chemical method. The morphological evolution of g-C3N4, from the bulk to the porous tubular architecture, is discussed in detail with the aid of time-resolved hydrothermal experiments. We found that the NO removal ratio and apparent reaction rate constant of the g-C3N4 microtubes were 1.8 and 2.6 times higher than those of pristine g-C3N4, respectively. By combining detailed experimental characterization and density functional theory calculations, the effects of N-vacancies in the g-C3N4 microtubes on O2 and NO adsorption activation, electron capture, and electronic structure were systematically investigated. These results demonstrate that surface N-vacancies act as specific sites for the adsorption activation of reactants and photoinduced electron capture, while enhancing the light-absorbing capability of g-C3N4. Moreover, the porous wall structures of the as-prepared g-C3N4 microtubes facilitate the diffusion of reactants, and their tubular architectures favor the oriented transfer of charge carriers. The intermediates formed during photocatalytic NO removal processes were identified by in situ diffuse reflectance infrared Fourier transform spectroscopy, and different reaction pathways over pristine and N-deficient g-C3N4 are proposed. This study provides a feasible strategy for air pollution control over g-C3N4 by introducing N-vacancy and porous tubular architecture simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.