Abstract
Breast cancer cells exhibit deregulated metabolism. They require increased glucose uptake and glycolysis-associated enzymes to produce adenosine triphosphate by aerobic glycolysis rather than oxidative phosphorylation. Glutamine metabolism and fatty acid synthesis are also enhanced to meet the rapid and sustained cell growth. Triple-negative breast cancer and human epidermal growth factor receptor-2-positive breast cancers demonstrate significant metabolic reprogramming with increased levels of glucose and glutamine metabolism. Increasing evidences also suggest that micro-ribonucleic acids play important roles in the regulation of metabolic enzymes of breast cancer cells in post-transcriptional manner. Human epidermal growth factor receptor-2 and oestrogen receptor signalling pathways could have crosstalk with micro-ribonucleic acids in metabolic regulation network. The current narrative review was planned to go through recent advances on the role of micro-ribonucleic acids on metabolic reprogramming in breast cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JPMA. The Journal of the Pakistan Medical Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.