Abstract

We observed the dynamic changes in the localization of microfilaments during the exocytic secretion of rat parotid and submandibular gland acinar cells, and obtained results which led us to propose a new concept of microfilament function in exocytosis. With the electron microscopy, NBD-Phallacidin (NBD-PL) fluorescence technique and immunohistochemistry for myosin, microfilaments consisting of F-actin and myosin were localized mainly underneath the luminal plasma membrane. Microfilaments were not detectable around the secretory granules which were stored in the cytoplasm, but were clearly observed around them whose membranes were continuous with the luminal plasma membrane. When viewed with NBD-PL and myosin fluorescence, the area of fused granule membranes revealed bright fluorescence in association with the luminal border, so that the luminal membrane undergoing exocytosis appeared like a 'bunch of grapes'. When excess exocytosis was stimulated by isoproterenol (IPR), the number of individual 'grapes' increased dramatically, indicating that the secretory granules are surrounded by microfilaments after the fusion with the luminal membrane. Microfilaments thus continuously undercoat the luminal membrane during exocytosis although the exocytic process involves the dilation and subsequent reduction of the luminal membrane due to the addition and removal of secretory granule membranes. This reduction of the dilated luminal membrane following exocytosis was, however, inhibited when the microfilaments were disrupted by cytochalasin D. Following this treatment, the lumina was expanded extraordinarily and the secretory products remained in the enlarged lumina, showing that the release of secretory products is inhibited when the microfilament function is disturbed. These results indicate that 1) microfilaments are localized mainly underneath the luminal plasma membrane and act as an obstacle to exocytosis when cells are at the resting phase and 2) at the secretory phase microfilaments allow exocytosis by disorganizing their barrier system and then, by encircling the discharged secretory granule membranes, provide forces for the extrusion of secretory products through the action of the acto-myosin contractile system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.