Abstract

BackgroundPhosphorus (P) -rich soils develop in phosphorite residing areas while P-deficient soils are ubiquitous in subtropical regions. Little has been reported that how metabolites participate in the seed development and the processes involved in their coping with contrasting-nutrient environments.ResultsHere we quantified the metabolites of Quercus variabilis acorns in the early (July), middle (August), late (September) development stages, and determined element (C, H, O, N, P, K, Ca, Mg, S, Fe, Al, Mn, Na, Zn, and Cu) concentrations of acorns in the late stage, at geologically-derived contrasting-P sites in subtropical China. The primary metabolic pathways included sugar metabolism, the TCA cycle, and amino acid metabolism. Most metabolites (especially C- and N-containing metabolites) increased and then decreased from July to September. Acorns between the two sites were significantly discriminated at the three stages, respectively, by metabolites (predominantly sugars and organic acids). Concentrations of P, orthophosphoric acid and most sugars were higher; erythrose was lower in late-stage acorns at P-rich sites than those at P-deficient sites. No significant differences existed in the size and dry mass of individual acorns between oak populations at the two sites.ConclusionsOak acorns at the two sites formed distinct metabolic phenotypes related to their distinct geologically-derived soil conditions, and the late-stage acorns tended to increase P-use-efficiency in the material synthesis process at P-deficient sites, relative to those at P-rich sites.

Highlights

  • Phosphorus (P) -rich soils develop in phosphorite residing areas while P-deficient soils are ubiquitous in subtropical regions

  • Morphological characteristics of developing acorns at Prich and P-deficient sites The morphological characteristics of developing acorns at two contrasting-P sites were shown in Fig. 1: Acorn length significantly increased from July to October (p < 0.05) at both the P-rich and P-deficient sites (Fig. 1a); the width and dry mass of individual acorns significantly

  • Metabolomic changes in developing acorns A total of 100 metabolites were annotated and quantified at the three development stages, as shown in Table S1 (Additional file 4), which could be categorized into six groups based on the molecular structure: amino acids, sugars, organic acids, alcohols, amines, and esters

Read more

Summary

Introduction

Phosphorus (P) -rich soils develop in phosphorite residing areas while P-deficient soils are ubiquitous in subtropical regions. There are often some P-rich ores mixed in the P-deficient sites in some subtropical areas of China, which leads to significant changes in P and other elements across the region [3, 4]. These contrasting-P sites generally give rise to plants with different stoichiometry characteristics [3, 5,6,7,8], which can affect the metabolism and formation of compounds within cells and organisms [9, 10]. Non-target metabolomics has been applied in many field experiments to elucidate the effects of environmental changes on the composition of metabolites [16,17,18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call