Abstract

Multispectral Mueller matrix imaging was performed over a spectral range from 470 to 632 nm on 4-μm unstained gastric tissue sections. A complete set of polarization parameters was derived. The combination of linear depolarization and linear retardance yields the highest accuracy in sample classification. When the depolarization of linearly polarized light due to scattering is independent of the orientation angle of the incident linear polarization vector, the derivation of linear polarization properties will require only 3×3 Mueller matrix, which would significantly reduce the complexity of the polarimetry imaging system. When additional parameters are needed to complement the two linear polarization parameters, retardance, circular depolarization, and depolarization can be included in classification in the order of preference. However, these additional parameters would require the measurement of 4×4 Mueller matrix. In addition, it appears that wavelength is not a critical factor in terms of classification accuracy for thin tissue sections in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.