Abstract
In contrast to its counterparts in Europe and North America, the Australian National Pollutant Inventory (NPI) includes estimates of aggregated emissions of nutrients (total nitrogen and total phosphorus) from catchments and facilities. Sparse or inadequate data limit the extent to which nutrient exports may be estimated from direct observations. The paucity of data for calibration and simulation limits the use of sophisticated models in most Australian catchments. Therefore, a simple unit-area load model—Catchment Management Support System (CMSS)—was selected to estimate aggregated catchment emissions for the NPI. Estimates from models like CMSS are sensitive to spatial and categorical resolution of land uses identified within the catchment and to nutrient generation rates selected for each land use category. Using three Hawkesbury–Nepean subcatchments, we show that while high spatial resolution of land use mapping is useful, only four or five major land use categories with carefully selected generation rates were required to estimate potential nutrient exports sufficiently well and to determine subcatchments contributing most. Nutrient emission estimates proved to be highly dependent on selection of generation rates so a bootstrap technique was adopted to reduce subjectivity and to improve estimates of confidence limits. This led to a specification of new generation rates for Natural, Unimproved pasture, Rural and Urban land uses and to establishment of uncertainty limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.