Abstract
OBJECTIVE—Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of diabetes, but the roles of specific ER Ca2+ release channels in the ER stress–associated apoptosis pathway remain unknown. Here, we examined the effects of stimulating or inhibiting the ER-resident inositol trisphosphate receptors (IP3Rs) and the ryanodine receptors (RyRs) on the induction of β-cell ER stress and apoptosis.RESEARCH DESIGN AND METHODS—Kinetics of β-cell death were tracked by imaging propidium iodide incorporation and caspase-3 activity in real time. ER stress and apoptosis were assessed by Western blot. Mitochondrial membrane potential was monitored by flow cytometry. Cytosolic Ca2+ was imaged using fura-2, and genetically encoded fluorescence resonance energy transfer (FRET)–based probes were used to measure Ca2+ in ER and mitochondria.RESULTS—Neither RyR nor IP3R inhibition, alone or in combination, caused robust death within 24 h. In contrast, blocking sarco/endoplasmic reticulum ATPase (SERCA) pumps depleted ER Ca2+ and induced marked phosphorylation of PKR-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), C/EBP homologous protein (CHOP)–associated ER stress, caspase-3 activation, and death. Notably, ER stress following SERCA inhibition was attenuated by blocking IP3Rs and RyRs. Conversely, stimulation of ER Ca2+ release channels accelerated thapsigargin-induced ER depletion and apoptosis. SERCA block also activated caspase-9 and induced perturbations of the mitochondrial membrane potential, resulting eventually in the loss of mitochondrial polarization.CONCLUSIONS—This study demonstrates that the activity of ER Ca2+ channels regulates the susceptibility of β-cells to ER stress resulting from impaired SERCA function. Our results also suggest the involvement of mitochondria in β-cell apoptosis associated with dysfunctional β-cell ER Ca2+ homeostasis and ER stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.