Abstract
Alveolar-capillary CO2 equilibration involves diffusive equilibration of CO2 across the blood-gas barrier and chemical equilibration of perfusate CO2-HCO-3-H+ reactions. These processes are governed by different, but related, driving forces and conductances. The present study examined the importance of pulmonary carbonic anhydrase (CA) for diffusive and reactive CO2 equilibration in isolated rat lungs. Lungs were perfused with salines containing membrane-impermeant or -permeant inhibitors of CA. Measurements of CO2 excretion rate, equilibrated venous and arterial PCO2 and pH, and postcapillary pH and PCO2 disequilibria were used, together with our previous model of CO2-HCO-3-H+ reactions and transport in saline-perfused capillaries (Bidani et al. J. Appl. Physiol. 55: 75-83, 1983), to compute the relevant driving forces and conductances. Reactive CO2 equilibration was markedly affected by extracellular (vascular) CA activity but not by the activity of intracellular (cytosolic) CA. The driving force for CO2 diffusion was strongly influenced by vascular CA activity. The conductance for CO2 diffusion was independent of CA activity. The minimum conductance for CO2 diffusion was estimated to be 700-800 ml.min-1.Torr-1. The results indicate that extracellular vascular CA activity influences both diffusive and reactive CO2 equilibration. However, cytosolic CA has no detectable role in alveolar-capillary CO2 equilibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.