Abstract

The effects of N, C, and B interstitials on the corrosion resistance of Fe were investigated in chloride-free boric-borate solutions at pH 6.0 and 8.0. In potentiodynamic polarization at pH 8.0, the anodic dissolution resistance of Fe-0.3N and Fe-0.3C in the active and passive regions was higher than that of pure Fe. and are considered to be dissolved chemical species that contribute to the higher corrosion resistance of Fe-0.3N. Potentiodynamic polarization measurements in a solution with indicated that also decreases the anodic current densities in the active and passive regions, suggesting that the formation of contributes to the higher corrosion resistance of Fe-0.3C. First-principles calculations showed that the presence of N, C, and B in the Fe-lattice decreases the electronic density of states (DOS) at and near the Fermi level. The consistency between the active dissolution rates and the DOS at and near the Fermi levels of the specimens suggests that the more stable electronic structures occurred by the presence of N and C also result in the suppression of active dissolution of Fe. For Fe-0.3B and Fe-0.006B, the presence of iron boride precipitates promoted localized corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.