Abstract

Proton-translocating nicotinamide nucleotide transhydrogenase is a membrane-bound protein composed of three domains: the hydrophilic NAD(H)-binding domain, the hydrophilic NADP(H)-binding domain, and the hydrophobic membrane domain. The latter harbors the proton channel. In Escherichia coli transhydrogenase, the membrane domain is composed of 13 transmembrane alpha helices, of which especially helices 13 and 14 contain conserved residues. To characterize the roles of the individual residues betaLeu240 to betaSer260 in helix 14, these were mutated as single mutants to cysteines in the cysteine-free background, and in the case of betaGly245, betaGly249, and betaGly252, also to leucines. In addition to the residues forming the helix, residues betaAsn238 and betaAsp239 were also mutated. Except for betaI242C, all mutants were normally expressed, purified, and characterized with respect to, e.g., catalytic activities and proton pumping. The results show that mutation of the conserved glycines betaGly245, betaGly249, and betaGly252, located on the same face of the helix, led to a general inhibition of all activities, especially in the case of betaGly252, suggesting a role of these glycines in helix-helix interactions. In contrast, mutation of the conserved serines betaSer250, betaSer251, and betaSer256 led to enhanced activities of all reactions, including the cyclic reaction which was mediated by bound NADP(H). Mutation of the remaining residues resulted in intermediate inhibitory effects. The results strongly support an important regulatory role of the membrane domain on the NADP(H)-binding site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.