Abstract
The hypoxia response is a fundamental phenomenon mainly regulated by hypoxia-inducible factors (HIFs). For more than a decade, we have investigated and revealed the roles of the hypoxia response in the development, physiology, and pathophysiology of the retina by generating and utilizing cell-type-specific conditional knockout mice. To investigate the functions of genes related to the hypoxia response in cells composing the retina, we generated various mouse lines that lack HIFs and/or related genes specifically in retinal neurons, astrocytes, myeloid cells, or retinal pigment epithelium cells. We found that these genes in the different types of retinal cells contribute in various ways to the homeostasis of ocular vascular and visual function. We hypothesized that the activation of HIFs is likely involved in the development and progress of retinal diseases, and we subsequently confirmed the pathological roles of HIFs in animal models of neovascular and atrophic ocular diseases. Currently, anti-vascular endothelial growth factor (anti-VEGF) therapy is a first-line treatment widely used for neovascular retinal diseases. However, alternative or additional targets are now required because several recent large-scale clinical trials and animal studies, including our own research, have indicated that VEGF antagonism may induce retinal vascular and neuronal degeneration. We have identified and confirmed a microRNA as a candidate for an alternative target against neovascular retinal diseases, and we are now working to establish a novel HIF inhibitor for clinical use based on the disease mechanism that we identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.