Abstract
We report density functional theory calculations aimed at predicting thermodynamically stable structures for ferrihydrite across a range of possible compositions determined by the amount of structural water. Based on an assumed formula unit of Fe5O8H + nH2O, we performed ab initio calculations with evolutionary searching to find the lowest enthalpy structures as a function of the water content up to n = 2. This is the most exhaustive search for the ferrihydrite structure conducted so far; more than 5000 unique configurations were generated and evaluated over five states of hydration. Among them, the Michel akdaliate model was generated, along with several energetically comparable new structures at higher states of hydration. However, a direct comparison between calculated and experimental pair distribution function and X-ray diffraction patterns for the 50 lowest energy structures shows that none beyond the Michel model could be associated with ferrihydrite. Nevertheless, this energetically comparable str...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.