Abstract
Traumatic brain injury (TBI) has been found to be associated with certain peripheral organ injuries; however, a few studies have explored the chronological influences of TBI on multiple organs and the systemic effects of therapeutic interventions. Particularly, high-mobility group box 1 (HMGB1) is a potential therapeutic target for TBI; however, its effects on peripheral organs remain unclear. Therefore, this study aimed to determine whether severe TBI can lead to multiple organ injury and how HMGB1 inhibition affects peripheral organs. This study used a weight drop-induced TBI mouse model and found that severe TBI can trigger short-lived systemic inflammation, in the lungs and liver, but not in the kidneys, regardless of the severity of the injury. TBI led to an increase in circulating HMGB1 and enhanced gene expressions of its receptors in every organ. Anti-HMGB1 antibody treatment reduced neuroinflammation but increased inflammation in peripheral organs. This study also found that HMGB1 inhibition appears to have a beneficial role in early neuroinflammation but could lead to detrimental effects on peripheral organs through decreased peripheral immune suppression. This study provides novel insights into the chronological changes in multiple organs due to TBI and the unique roles of HMGB1 between the brain and other organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.