Abstract

In this study, new procedure with improved tandem HPLC plus ESI-MS was utilized to decipher the protective role of glutathione (GSH) against dopamine (DA) oxidation. We demonstrated that auto-oxidation of DA could produce aminochrome (AM, a cyclized DA quinone), which could be effectively abrogated by reductants, especially by GSH. Furthermore GSH was demonstrated to be able to conjugate with AM to form various conjugates via condensation reactions without enzymatic catalysis. The GSH-AM conjugates tend to aggregate, possibly mediated by conjugated AM structures, but could be inhibited by GSH. We hypothesized that proteins conjugated by AM might facilitate Lewy body formation of Parkinson's disease (PD) in dopaminergic neurons via similar polymerization. We proposed that GSH could protect dopaminergic neurons against DA-induced toxicity via various mechanisms. The imbalance between DA oxidation and GSH protective capacity could be a key factor contributing to PD. Strategies to use GSH analogues, GSH inducers or to control DA oxidation might work to control PD onset and development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.