Abstract

Fucoidan, a sulfated polysaccharide derived from brown seaweed, is an important material valued for its various biological functions, including anti-coagulation, anti-aging, and immune system support. In this study, we examined the potential of fucoidan as a novel emulsifying agent in BSA (bovine serum albumin)-stabilized emulsion at a neutral pH. We measured the dispersed oil-droplet size, surface zeta-potential and creaming formation of 0.5 wt% BSA emulsion (20 wt% oil fraction) in the absence and presence of fucoidan. The average particle size and zeta-potential value were 625.4 nm and -30.91 mV in only BSA-stabilized emulsion and 745.2 nm and -44.2 mV in 1.0 wt% fucoidan-added BSA emulsion, respectively. This result suggested that some positive charges of the BSA molecules interacted with the negative charges of fucoidan to inhibit the flocculation among the oil droplets. The creaming rate calculated from the backscattering data measured by Turbiscan dramatically decreased in 1.0 wt% fucoidan-added BSA emulsion during storage. Accordingly, the repulsion forces induced among the oil particles coated with 1.0 wt% fucoidan in emulsion solution resulted in significantly increased emulsion stability. The turbid- ity of the BSA-stabilized emulsion at 500 nm decreased during five days of storage. However, the fucoidan-added BSA emulsion exhibited a higher value of turbidity than the BSA-stabilized emulsion did. In conclusion, an anionic sulfated fucoidan lowered the surface zeta-potential of BSA-coated oil droplets via the electrostatic interaction, and subsequently inhibited the flocculation among the oil droplets, thereby clearly minimizing the creaming and phase separation of the emulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.