Abstract

Extracellular polymeric substances (EPS) are important shields for microalgae when confronting with external stresses. However, the underlying roles of EPS in the interactions between microplastics (MPs) and microalgae remain poorly understood. In this study, three sizes of polystyrene (PS) MPs (20 nm, 100 nm, and 1 μm) were chosen for evaluating the compositions of EPS, secreted by Microcystis aeruginosa during exposure. The results indicated that the EPS compositions were different when M. aeruginosa was exposed to PS MPs of different sizes. The presence of EPS is helpful for alleviating the adverse effects of PS MPs on M. aeruginosa cell growth, photosynthesis, and oxidative stress. With the exception of the shading effect, insufficient EPS cause direct adsorption of unstable 1 μm PS MPs to the algal surface, which could destroy the cell wall. In contrast, aromatic proteins and fulvic acids are representative EPS components stimulated by 100 nm PS MPs, contributing to the self-aggregation and encapsulation of algal cells and availability of nutrients for algal growth, respectively. High amounts of polysaccharides were secreted by M. aeruginosa along with humic acids during exposure to 20 nm PS MPs, both of which are crucial in the homo-aggregation of 20 nm PS MPs toward minimize its adverse effects on M. aeruginosa. Together, these findings revealed the differences in EPS under the stimulation of PS MPs of different sizes and clarified the roles of different EPS components in resisting the adverse effects of PS MPs on M. aeruginosa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call