Abstract

Dye-sensitized solar cells (DSC) were prepared from nanoporous TiO(2) electrodes with two different cobalt complex redox couples, propylene-1,2-bis(o-iminobenzylideneaminato)cobalt(II) {Co(II)(abpn)} and tris(4,4'-di-tert-buthyl-2,2'-bipyridine)cobalt(II) diperchlorate {Co(II)(dtb-bpy)(3)(ClO(4))(2)}. The performances of the DSCs were examined with varying the concentrations of the redox couples and Li cations in methoxyacetonitrile. Under 1 sun conditions, short-circuit currents (J(sc)) increased with the increase of the redox couple concentration, and the maximum J(sc) was found at the Li(+) concentration of 100 mM. To rationalize the observed trends of J(sc), electron diffusion coefficients and lifetimes in the DSCs were measured. Electron diffusion coefficients in the DSCs using cobalt complexes were comparable to the previously reported values of nanoporous TiO(2). Electron lifetime was independent of the concentration of the redox couples when the concentration ratio of Co(II)(L) and Co(III)(L) was fixed. With the increase of Li(+) concentration, the electron lifetime increased. These results were interpreted as due to their slow charge-transfer kinetics and the cationic nature of Co complex redox couples, in contrast to the anionic redox couple of I(-)/I(3)(-). The increase of the lifetimes with Li(+) was interpreted with the decrease of the local concentration of Co(III) near the surface of TiO(2). The addition of 4-tert-butylpyridine (tBP) with the presence of Li(+) increased J(sc) significantly. The observed increase of the electron lifetime by tBP could not explain the large increase of J(sc), implying that tBP facilitates the charge transfer from Co(II)(L) to dye cation, with the association of the change of the reorganization energy between Co(II) and Co(III).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.