Abstract

Daphnia magna exhibits a parthenogenetic reproductive cycle linked to a moulting cycle, but regulatory mechanisms of neither moulting nor reproductive cycle are understood in daphnids. Moulting is regulated by ecdysteroids in insects. A previous study showed that a titre of ecdysteroids changed during the reproductive cycle in D. magna; however, no clear correlation among titre, moulting and reproductive cycles has been proved in daphnids. To understand endocrine mechanisms underlying the coordinated reproductive cycle, we analysed the expression of genes coding for enzymes in ecdysteroids synthesis or inactivation pathways, and the effects of 20-hydroxyecdysone (20E) on moulting and ovulation in D. magna. We cloned orthologues of neverland (nvd) and shade (shd) in the ecdysteroids synthesis pathway, and Cyp18a1 in the ecdysteroids inactivation pathway previously identified in insects. Gene expression of Cyp18a1 changed conversely with the fluctuation in ecdysteroids titre during the intermoulting period. Tissue-specific expression analysis of nvd showed a prominent expression in the gut. Furthermore, treatment of adult female D. magna with 20E inhibited moulting and/or ovulation. Our cloning and phylogenetic analyses showed that nvd and shd as well as Cyp18a1 are evolutionary conserved in D. magna, suggesting that these genes appeared in arthropods before the radiation of insects. The gene expression analysis during the reproductive cycle indicated that Cyp18a1 possibly regulates the decline of ecdysteroid titre before moulting and ovulation. Furthermore, the expression of nvd in the gut suggested that ecdysone might be synthesised in the gut. Exogenous 20E-treatment resulted in the failure of not only moulting, but also ovulation, suggesting that a low level of ecdysteroids before moulting is required for moulting and ovulation in D. magna.

Highlights

  • Daphnia magna exhibits a parthenogenetic reproductive cycle linked to a moulting cycle, but regulatory mechanisms of neither moulting nor reproductive cycle are understood in daphnids

  • Our cloning and phylogenetic analyses showed that nvd and shd as well as Cyp18a1 are evolutionary conserved in D. magna, suggesting that these genes appeared in arthropods before the radiation of insects

  • The gene expression analysis during the reproductive cycle indicated that Cyp18a1 possibly regulates the decline of ecdysteroid titre before moulting and ovulation

Read more

Summary

Introduction

Daphnia magna exhibits a parthenogenetic reproductive cycle linked to a moulting cycle, but regulatory mechanisms of neither moulting nor reproductive cycle are understood in daphnids. A previous study showed that a titre of ecdysteroids changed during the reproductive cycle in D. magna; no clear correlation among titre, moulting and reproductive cycles has been proved in daphnids. To understand endocrine mechanisms underlying the coordinated reproductive cycle, we analysed the expression of genes coding for enzymes in ecdysteroids synthesis or inactivation pathways, and the effects of 20-hydroxyecdysone (20E) on moulting and ovulation in D. magna. Ecdysteroids (ecdysone and 20-hydroxyecdysone; 20E) are steroid hormones that regulate moulting and metamorphosis in insects. These have been extensively studied in insects, and are commonly called “moulting hormones” as their major role implies. In crustaceans, reports on ecdysteroidal regulation in both moulting and reproduction are scarce [4]. The synchronised moulting and reproductive cycle in daphnids implies a possibility that ecdysteroids may regulate moulting, and the reproductive cycle

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call