Abstract

Surface tension-time adsorption isotherms were measured at 37 degrees C for calf lung surfactant extract (CLSE) and subfractions of its constituents: the complete mix of surfactant phospholipids (PPL), phospholipids depleted in anionic phospholipids (mPPL), hydrophobic surfactant proteins plus phospholipids (SP&PL, SP&mPL), and neutral lipids plus phospholipids (N&PL). Adsorption experiments were done using a static bubble surfactometer where diffusion resistance was present, and in a Teflon dish where diffusion was minimized by subphase stirring. The contribution of diffusion to bubble adsorption measurements decreased as phospholipid concentration increased, and was small at 0.25 mM phospholipid. At this phospholipid concentration, PPL, mPPL, and N&PL all adsorbed more rapidly and to lower final surface tensions than dipalmitoyl phosphatidylcholine (DPPC) on the bubble. However, none of these phospholipid mixtures adsorbed to surface tensions below 46 mN/m after 20 min, behavior that was significantly worse than CLSE, SP&PL, and SP&mPL which additionally contained hydrophobic SP. Both CLSE and SP&PL rapidly adsorbed to surface tensions below 25 mN/m at 0.25 mM phospholipid concentration on the bubble, as did SP&mPL at a somewhat reduced rate. Further experiments defining the influence of hydrophobic protein content showed that addition of even 0.13% SP (by wt) to PPL improved adsorption substantially, and that mixtures of PPL combined with 1% SP had adsorption very similar to CLSE. Mixtures of SP combined with mPPL had faster adsorption than corresponding mixtures of SP:DPPC, and neither fully matched the adsorption rates of CLSE and SP&PL even at high SP levels (4% in SP:mPPL and 5.2% in SP:DPPC). These results demonstrate that although the secondary zwitterionic and anionic phospholipids and neutral lipids in lung surfactant enhance adsorption relative to DPPC, the hydrophobic SP have a much more pronounced effect in promoting the rapid entry of pulmonary surfactant into the air-water interface.

Highlights

  • Surface tension-time adsorption isotherms were measured at 37°Cfor calf lung surfactant extract (CLSE) and subfractions of its constituents: the complete mix of surfactant phospholipids (PPL), phospholipids depleted in anionic phospholipids, hydrophobic surfactant proteins plus phospholipids (SP&PL, SP&mPL), and neutral lipids plus phospholipids (N&PL)

  • We measure surface tension-time adsorption isotherms for calf lung surfactant extract (CLSE) and a series of its subfractions including the complete mix of purified phospholipids (PPL), purified phospholipids depleted in anionic phospholipids, neutral lipids and phospholipids (N&PL),and hydrophobic surfactant proteins and phospholipids (SP&PLand SP&mPL)

  • The adsorption of dipalmitoyl phosphatidylcholine (DPPC), CLSE, and subfractions of CLSE (PPL, mPPL, N&PL, CLSE subfraction containing hydrophobic SP plus PPL (SP&PL))measured with the static bubble method is shown in Fig. 1 for a fixed phospholipid concentration of 0.25 mM

Read more

Summary

Introduction

Surface tension-time adsorption isotherms were measured at 37°Cfor calf lung surfactant extract (CLSE) and subfractions of its constituents: the complete mix of surfactant phospholipids (PPL), phospholipids depleted in anionic phospholipids (mPPL), hydrophobic surfactant proteins plus phospholipids (SP&PL, SP&mPL), and neutral lipids plus phospholipids (N&PL). We measure surface tension-time adsorption isotherms for calf lung surfactant extract (CLSE) and a series of its subfractions including the complete mix of purified phospholipids (PPL), purified phospholipids depleted in anionic phospholipids (mPPL), neutral lipids and phospholipids (N&PL),and hydrophobic surfactant proteins and phospholipids (SP&PLand SP&mPL).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.