Abstract

The temperature dependences of the 1H and 13C spin–lattice relaxation time in the laboratory frame, T1, and in the rotating frame, T1ρ, in [N(CH3)4]2CoCl4 were measured by static nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. In the ferroelastic phase, 1H T1ρ underwent molecular motion according to the Bloembergen–Purcell–Pound theory. Two inequivalent ions, a-N(CH3)4 and b-N(CH3)4, were identified by 13C cross polarization (CP)/MAS NMR. On the basis of the 13C NMR results, the existence of two chemically inequivalent a-N(CH3)4 and b-N(CH3)4 ions in the ferroelectric phase and the existence of the ferroelastic twin structure of the N(CH3)4 ions in the ferroelastic phase were discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.