Abstract

Abstract Both observational data analysis and model simulations suggest that convective momentum transport (CMT) by cumulus convection may play a significant role in the intraseasonal oscillations (ISO) by redistributing atmospheric momentum vertically through fast convective mixing process. The authors present a simple theoretical model for the ISO by parameterizing the cumulus momentum transport process in which the CMT tends to produce barotropic wind anomalies that will affect the frictional planetary boundary layer (PBL). In the model with equatorial easterly vertical wind shear (VWS), it is found that the barotropic CMT tends to select most unstable planetary-scale waves because CMT suppresses the equatorial Ekman pumping of short waves, which reduces the shortwave instability from the PBL moisture convergence and accelerates the shortwave propagation. The model with subtropical easterly VWS has behavior that can be qualitatively different from the model with equatorial easterly VWS and has robust northward propagation. The basic mechanism of this northward propagation is that the CMT accelerates the barotropic cyclonic wind to the north of ISO, which will enhance the precipitation by PBL Ekman pumping and favor the northward propagation. The simulated northward propagation is sensitive to the strength and location of the seasonal-mean easterly VWS. These results suggest that accurate simulation of the climatological-mean state is critical for reproducing the realistic ISO in general circulation models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call