Abstract

We investigated the response of Mn-hyperaccumulator Phytolacca americana L. to manganese excess as well as the relationships between lignin deposition in the plant’s leaves, peroxidase and laccase activities in the leaf apoplast, and Mn toxicity. The exceptionally high tolerance of P. americana to Mn, both in solution and in tissue, was confirmed. No visible brown spot was observed in the leaves of plants treated with ≤10,000 μM Mn for 10 days. Mn treatment significantly increased lignin content and laccase activity in the apoplastic washing fluid (AWF) of P. americana leaves. In contrast, an increase in the Mn supply was paralleled by a significant decrease in the concentration of total phenolic compounds (TPCs) and in water-soluble guaiacol peroxidase (SPOD) activity in leaf AWF. This result suggested that an increase in lignin deposition decreased the concentration of apoplastic TPCs that are available to generate potentially toxic intermediates by acting as peroxidase substrates. Thus, data of the present study indicate that lignin formation by laccase activities reduces Mn toxicity and increases Mn tolerance of P. americana by depressing SPOD-mediated formation of toxic intermediates from TPCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call