Abstract
Microtubule and microfilament cytoskeletons play key roles in the whole process of cytokinesis. Although a number of hypotheses have been proposed to elucidate the mechanism of cytokinesis by microtubule and actin filament cytoskeletons, many reports are conflicting. In our study, combining the cytoskeletons drug treatments with the time-lapse video technology, we retested the key roles of microtubule and actin filament in cytokinesis. The results showed that depolymerization of microtubules by Nocodazole after the initiation of furrowing would not inhibit the furrow ingression, but obviously decrease the stiffness of daughter cells. Depolymerizing actin filaments by Cytochalasin B before metaphase would inhibit the initiation of furrowing but not chromosome segregation, resulting in the formation of binucleate cells; however, depolymerizing actin filaments during anaphase would prevent furrowing and lead to the regress of established furrow, also resulting in the formation of binucleate cells. Further, depolymerizing microtubules and actin filaments simultaneously after metaphase would cause the quick regress of the furrow and the formation of binucleate cells. From these results we propose that a successful cytokinesis requires functions and coordination of both the microtubule and actin filament cytoskeletons. Microtubule cytoskeleton may function in the positioning and initiation of cleavage furrow, and the actin filament cytoskeleton may play key roles in the initiation and ingression of the furrow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.