Abstract

Following amputation of a urodele limb or teleost fin, the formation of a blastema is a crucial step in facilitating subsequent regeneration. Using the zebrafish caudal fin regeneration model, we have examined the hypothesis that fibroblast growth factors (Fgfs) initiate blastema formation from fin mesenchyme. We find that fibroblast growth factor receptor 1 (fgfr1) is expressed in mesenchymal cells underlying the wound epidermis during blastema formation and in distal blastemal tissue during regenerative outgrowth. fgfr1 transcripts colocalize with those of msxb and msxc, putative markers for undifferentiated, proliferating cells. A zebrafish Fgf member, designated wfgf, is expressed in the regeneration epidermis during outgrowth. Furthermore, we show that a specific inhibitor of Fgfr1 applied immediately following fin amputation blocks blastema formation, without obvious effects on wound healing. This inhibitor blocks the proliferation of blastemal cells and the onset of msx gene transcription. Inhibition of Fgf signaling during ongoing fin regeneration prevents further outgrowth while downregulating the established expression of blastemal msx genes and epidermal sonic hedgehog. Our findings indicate that zebrafish fin blastema formation and regenerative outgrowth require Fgf signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.