Abstract

Accumulating evidence indicates that periodontal disease is associated with human cardiovascular diseases. The periodontal pathogen Porphyromonas gingivalis was shown to be present in atherosclerotic plaques in addition to periodontal pockets. This bacterium is known to produce two individual cysteine proteinases, Arg-gingipain (Rgp) and Lys-gingipain (Kgp). Here we show that these two enzymes are responsible for either the disruption of cytokine responses in human umbilical vein endothelial cells (HUVEC) to the bacterium infection or the loss of cell viability. The expression of interleukin-8 and monocyte chemoattractant protein-1 mRNA in HUVEC was greatly induced when infected with the wild-type strain, nevertheless, their protein levels in the culture medium were markedly decreased. This decrease was completely abolished in the cells infected with the Rgp/Kgp-null mutant, but not in either the Rgp- or Kgp-null mutants. Loss of the adhesion activity and viability of HUVEC were greatly induced by the culture supernatant of the wild-type strain and strongly inhibited by either a combination of the Rgp- and the Kgp-specific inhibitors or the deficiency of the Rgp- and Kgp-encoding genes. These findings indicate that P. gingivalis modulates the cytokine response in the cells and disrupts the adhesion activity and the viability through the cooperative action of Rgp and Kgp and thereby may contribute to pathogenesis of cardiovascular diseases as well as periodontal disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.