Abstract

The soybean gene Glyma10g34760 appears to encode a RAV2-like transcription factor orthologue (DQ147914; hereafter GmRAV) based on sequence similarity. The gene is a member of the ERF/AP2 transcription factor family that has been shown to be increased in transcript abundance by cytokinins (CKs). Transgenic GmRAV-overexpressing (-ox) tobacco plants exhibited increased CK signalling-related phenotypes including dwarfism, reduced apical dominance, extreme longevity, vigorous outgrowth of lateral buds, small and dark green leaves, reduced root growth, repressed flowering under both long- and short-day conditions, and altered sensitivity to daylength. In contrast, inhibition (-i) of GmRAV in soybean displayed the opposite phenotypic alterations which were consistent with defects in CK signalling. Phenotypes included earlier time of emergence; reduced numbers of branches, leaves, and flower buds; increased plant height; increased apical dominance; and earlier flowering and maturity. GmRAV-i soybean was less sensitive to cytokinin in hypocotyls and root growth inhibition assays. GmRAV-i soybean showed decreased frequency of adventious shoot formation in tissue culture in the presence of CKs, which might be attributed to the significantly decreased activities of CUC2, STM, and WUS involved in shoot meristem specification. GmRAV protein was localized in the nucleus in leaves. The GmRAV promoter-β-glucuronidase (GUS) fusion was largely expressed in a meristematic region of the shoot apex, which was consistent with expressed sequence tag and microarray data. GmRAV was inferred to play a key role in CK and photoperiod signalling that subsequently regulated plant development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call