Abstract

Self-organization has been proposed to be implemented in complex systems which require the automation capabilities to govern itself and to adapt upon changes. Self-organizing systems can be modeled as multi-agent systems (MAS) since they share common characteristics in that they consist of multiple autonomous systems. However, most existing MAS engineering methodologies do not fully support self-organizing systems design since they require predefined goals and agent behaviors, which is not the case in self-organizing systems. Another feature that is currently not supported for designing self-organizing MAS is the separation between the design of agent behaviors and behavior adaptation, i.e. how agents adapt their behaviors to respond upon changes. To tackle these issues, this paper proposes a role modeling method, in which agent behaviors are represented as roles, to design how agents perform behavior adaptation at runtime by switching between roles. The applicability of the proposed role modeling method is evaluated in a case study of a self-organizing smart transportation system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call