Abstract

Growing a wide band gap shell on bare core and/or core@shell materials is a fascinating idea for improving the photoluminescence (PL) efficiency and stability. An epitaxially grown shell adds another degree of complexity to the system and modulates the excited-state relaxation dynamics, which remain poorly understood. Employing time-resolved PL and femtosecond transient absorption (TA) spectroscopy, we present a thorough study on charge carrier dynamics of CdSe@CdS and CdSe@CdS/ZnS quantum rods (QRs). Various excitation wavelengths were used to identify the contribution of individual segment toward the optical properties of the QRs. Our femtosecond TA measurements provide a clear evidence of excitation migration from CdS as well as ZnS to CdSe core within few picoseconds of photoexcitation. The excitons recombine faster in the CdSe moiety of the CdSe@CdS/ZnS than that of the CdSe@CdS QRs via an extra decay path. The interband trap states that are created via the formation of extended defects because of la...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call