Abstract

Bubble formation and removal within the molten glass is an important issue in glass industry. Various sources of bubbles have been identified in glass manufacturing: decomposition of the glass components, air trapping, oxidation/reduction reactions, precipitation resulting from insufficient refining, etc. It has been demonstrated in a previous paper that the blistering phenomenon at the interface between a molten glass and a zirconia-based refractory can be ascribed to the oxygen semipermeability through the zirconia phase. The objective of this study is to clarify the role of temperature on the blistering process, and especially, below and above the phase transition temperature of zirconia (monoclinic/tetragonal transformation) and to evaluate the role of zirconia doping on the blistering level. The influence of the kinetics of the surface processes at the glass/refractory interface is emphasized. Quantitative measurement of the slight blistering ascribed to the so-called “redox shock” is also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.