Abstract
Since ytterbium (Yb) possesses a low work function of 2.6 eV and Yb fluoride generally has a high negative free energy of formation, it is conceivable to use Yb, either directly or parasitically, with a metal fluoride, as a cathode in organic light-emitting diodes (OLEDs). In this work, the electronic structure and chemistry at the interface of Yb/poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) were investigated by ultraviolet and x-ray photoemission spectroscopy (UPS and XPS, respectively). We found that the deposition of Yb on top of F8BT foremost formed organometallic complexes with the sulfur but interacted partly with the nitrogen of F8BT, and eventually formed a Yb–C complex at higher Yb coverages. In the UPS spectra, Yb deposition increased the relative peak intensities corresponding to the σ-bonds originated from the aliphatic side chains, implying that some of the π-conjugated carbons in the polymer backbone may be destroyed. These results agree well with the disappearance of the π-to-π* transition as observed from the shake-up peaks of the carbon 1s core level in the XPS. The chemistry at the interfaces of Yb/CsF/Au and Yb/CsF/F8BT was also examined by XPS. In both cases, Cs was liberated from the CsF upon Yb deposition and the Yb reacted with the liberated F to form YbF3. In the Yb/CsF/F8BT system, the dissociated Cs did not exist in the metallic state, but reacted with the N atoms and carbon backbone in the F8BT. The low work function of Cs (2.2 eV) may further enhance the injection of electrons into the polymer layer. More importantly, the utilization of Yb/CsF as an electrode is polymer independent, and the CsF layer between the Yb and F8BT could retard Yb diffusion into the bulk polymer. The present results are supported by a calculation of the free energy needed to liberate the Cs in the metal/CsF system using a simple thermodynamic model. It is suggested that the use of Yb/CsF cathode in the polymer offers an advantage over most other metal fluorides because the current electrode has a higher affinity to liberate Cs due to the high negative heat of formation of YbF3, although Yb alone may not be a good electron injector in OLEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.