Abstract

Yessotoxin (YTX) is a marine polyether toxin previously described as a phosphodiesterase (PDE) activator in fresh human lymphocytes. This toxin induces a decrease of adenosine 3',5'-cyclic monophosphate (cAMP) levels in fresh human lymphocytes in a medium with calcium (Ca(2+) ), whereas the contrary effect has been observed in a Ca(2+) -free medium. In the present article, the effect of YTX in K-562 lymphocytes cell line has been analysed. Surprisingly, results obtained in K-562 cell line are completely opposite than in fresh human lymphocytes, since in K-562 cells YTX induces an increase of cAMP levels. YTX cytotoxicity was also studied in both K-562 cell line and fresh human lymphocytes. Results demonstrate that YTX does not modify fresh human lymphocytes viability, whereas in K-562 cells, YTX has a highly cytotoxic effect. It has been described in a previous study that YTX induces a small cytosolic Ca(2+) increase in fresh human lymphocytes but no effect was observed on Ca(2+) pools depletion in these cells. However, our results show that, in K-562 cells, YTX has no effect on cytosolic Ca(2+) levels in a medium with Ca(2+) and induces an increase on Ca(2+) pools depletion followed by a Ca(2+) influx. As far as Ca(2+) modulation is concerned these results demonstrate that YTX has a clear opposite effect in tumoural and fresh human lymphocytes. In addition, intracellular Ca(2+) reservoirs affected by YTX are different than thapsigargin-sensible pools. Furthermore, YTX-dependent Ca(2+) pools depletion was abolished by cAMP analogue (dibutyryl cAMP), phosphodiesterase-4 (PDE4) inhibitor (rolipram), protein kinase A inhibitor (H89) and oxidative phosphorylation uncoupler carbonyl cyanide p-(trifluoromethoxy) (FCCP) treatments. This evidences the crosstalks between Ca(2+) , YTX and cAMP pathways. Also, results obtain demonstrate that YTX-dependent Ca(2+) influx was only abolished by FCCP pre-treatment, which indicates a link between YTX and mitochondria in K-562 cell line. Cytosolic expression of A-kinase anchor proteins (AKAPs), the proteins which integrates phosphodiesterases (PDEs) and PKA to the mitochondria, was determined in both cell models. On the one hand, in human fresh lymphocytes, YTX increases AKAP149 cytosolic expression. This fact is accompanied with a decrease in cAMP levels, and therefore PDEs activation, which finally leads to cell survival. On the other hand, in tumoural lymphocytes, YTX has an opposite effect since decreases AKAP149 cytosolic expression and increase cAMP levels which leads to cell death. This is the first time that YTX and mitochondrial AKAPs proteins relationship is characterised.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.