Abstract

The heart requires a high amount of energy, in the form of adenosine triphosphate, to maintain its viability and pump function. Anaerobic glycolysis and mitochondrial oxidative phosphorylation are the two main metabolic pathways by which adenosine triphosphate is generated, using fatty acids, glucose, lactate, and ketone bodies as primary substrates. Previous studies have demonstrated that, in response to stress, the heart undergoes alterations in metabolism, ranging from changes in substrate utilization to mitochondrial function, collectively called metabolic remodeling. However, the molecular mechanism mediating metabolic remodeling in the heart remains unclear. Yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which are major downstream effectors of the Hippo signaling pathway, play an important role in the regulation of heart size and cellular homeostasis of cardiomyocytes through the regulation of various transcriptional factors under both physiological and pathophysiological conditions. Recent findings in various organs and cell types have revealed that YAP and TAZ play an important role in energy metabolism. Here, we summarize what is currently known about YAP/TAZ in the regulation of metabolism of various substrates and mitochondrial function in various organs and cell types and discuss the potential role of YAP/TAZ in mediating metabolic remodeling of the heart during stress and heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.