Abstract

Understanding the nucleation of iron oxides and the underlying hydrolysis of aqueous iron species is still challenging, and molecular-level insights into the orchestrated response of water, especially at the hydrolysis interface, are lacking. We follow iron(III) hydrolysis in the presence of a synthetic bacterial iron nucleator, which is a magnetosome membrane specific peptide, by using a constant pH titration technique. Three distinct hydrolysis regimes were identified. Interface-selective sum frequency generation (SFG) spectroscopy was used to probe the interfacial reaction and water in direct contact with the peptide. SFG data reveal that iron(III) species react quickly with interfacial peptides while continuously enhancing water alignment into the later stages of hydrolysis. The gradually aligning water molecules are associated with initially promoted (regimes I and II) and later suppressed (regime III) hydrolysis after the saturation of water alignment has occurred until regime II. These interfacial insights are crucial for understanding the early stage of iron oxide biomineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call