Abstract
The effect of free convection and vortex structures arising near the “singing” flame of a gasoline blow torch on excitation of thermal self-oscillations in a resonator tube is studied experimentally. A technique for measuring the oscillation amplitude of the gas column is suggested. It is found that the excitation of acoustic oscillations decreases the height of the singing flame and the mass velocity of burning but raises the gasoline combustion efficiency. The variation of the temperature field of the singing flame over an oscillation cycle is studied by digital photometry. Hysteretic dependences of the acoustic oscillation amplitude on the thermal power of the gasoline diffusion flame are obtained. A mechanism explaining the influence of vortex structures on the self-oscillatory mode of burning in condensed systems is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.